Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 50(7): 6159-6170, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37231216

RESUMO

In the past decades, resveratrol has gained increasing attention due to its versatile and beneficial properties. This natural polyphenol, commonly present in the human diet, has been shown to induce SIRT1 and to modulate the circadian rhythm at the cellular and organismal levels. The circadian clock is a system regulating behavior and function of the human body, thus playing a crucial role in health maintenance. It is primarily entrained by light-dark cycles; however, other factors such as feeding-fasting, oxygen and temperature cycles play a significant role in its regulation. Chronic circadian misalignment can lead to numerous pathologies, including metabolic disorders, age-related diseases or cancer. Therefore, the use of resveratrol may be a valuable preventive and/or therapeutic strategy for these pathologies. This review summarizes studies that evaluated the modulatory effect of resveratrol on circadian oscillators by focusing on the potential and limitations of resveratrol in biological clock-related disorders.


Assuntos
Relógios Circadianos , Humanos , Resveratrol/farmacologia , Ritmo Circadiano , Dieta , Jejum
2.
Int J Pharm ; 624: 122024, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35843365

RESUMO

The development of novel inhaled formulations in the pre-clinical stage has been impeded by a lack of meaningful information related to drug dissolution and transport at the lung epithelia due to the absence of physiologically relevant in vitro respiratory models. The objective of the present study was to develop an in vitro experimental model, which combined the next generation impactor (NGI) and two respiratory epithelial cell lines, for examining the aerodynamic performance of dry powder inhalers and the fate of aerosolised drugs following lung deposition. The NGI impaction plates of stage 3 (i.e., a cut-off diameter of 2.82-4.46 µm) and stage 7 (i.e., a cut-off diameter of 0.34-0.55 µm) were modified to accommodate 3 cell cultures inserts. Specifically, Calu-3 cells and H441 cells, which are representative of the bronchial and alveolar epithelia in the lung, respectively, were cultivated at the air-liquid interface on SnapwellsTM with polycarbonate membranes. The aerodynamic particle size distribution of the modified NGI was investigated using resveratrol dry powder formulation (as a model drug). The suitability of such an in vitro model was confirmed by examining the in vitro aerodynamic performance of the model drug as compared to the conventional NGI setup (i.e., without the integrated Snapwell inserts), as well as the effect of experimental conditions (e.g., 60 L/min airflows) on the cells in the integrated Snapwell inserts. After deposition of the aerodynamically fractioned resveratrol, the permeation of the drug across the cell layer to the basolateral chamber of the Snapwell inserts was evaluated over 24 h. Results obtained from the drug transport study showed that the cell-integrated NGI provided realistic drug delivery conditions to the cells that can be used to assess the fate of fractionated aerosol particles. This system enables a better understanding of the in vitro drug deposition in the lungs and allows studies on both aerodynamic characterisation and drug transport (drug biological interactions with the cells) to be performed simultaneously.


Assuntos
Inaladores de Pó Seco , Administração por Inalação , Aerossóis , Inaladores de Pó Seco/métodos , Tamanho da Partícula , Resveratrol
3.
Biochem Soc Trans ; 50(3): 1191-1204, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35604112

RESUMO

Lipids comprise a diverse group of metabolites that are indispensable as energy storage molecules, cellular membrane components and mediators of inter- and intra-cellular signaling processes. Lipid homeostasis plays a crucial role in maintaining metabolic health in mammals including human beings. A growing body of evidence suggests that the circadian clock system ensures temporal orchestration of lipid homeostasis, and that perturbation of such diurnal regulation leads to the development of metabolic disorders comprising obesity and type 2 diabetes. In view of the emerging role of circadian regulation in maintaining lipid homeostasis, in this review, we summarize the current knowledge on lipid metabolic pathways controlled by the mammalian circadian system. Furthermore, we review the emerging connection between the development of human metabolic diseases and changes in lipid metabolites that belong to major classes of lipids. Finally, we highlight the mechanisms underlying circadian organization of lipid metabolic rhythms upon the physiological situation, and the consequences of circadian clock dysfunction for dysregulation of lipid metabolism.


Assuntos
Relógios Circadianos , Diabetes Mellitus Tipo 2 , Doenças Metabólicas , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipídeos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...